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A Parallel Non-Overlapping Domain-Decomposition
Algorithm for Compressible Fluid Flow Problems on
Triangulated Domains

Timothy J. Barth, Tony F. Chan, and Wei-Pai Tang

1. Introduction

This paper considers an algebraic preconditioning algorithm for hyperbolic-
elliptic fluid flow problems. The algorithm is based on a parallel non-overlapping
Schur complement domain-decomposition technique for triangulated domains. In
the Schur complement technique, the triangulation is first partitioned into a num-
ber of non-overlapping subdomains and interfaces. This suggests a reordering of
triangulation vertices which separates subdomain and interface solution unknowns.
The reordering induces a natural 2 x 2 block partitioning of the discretization ma-
trix. Exact LU factorization of this block system yields a Schur complement matrix
which couples subdomains and the interface together. The remaining sections of
this paper present a family of approximate techniques for both constructing and
applying the Schur complement as a domain-decomposition preconditioner. The
approximate Schur complement serves as an algebraic coarse space operator, thus
avoiding the known difficulties associated with the direct formation of a coarse
space discretization. In developing Schur complement approximations, particular
attention has been given to improving sequential and parallel efficiency of imple-
mentations without significantly degrading the quality of the preconditioner. A
computer code based on these developments has been tested on the IBM SP2 us-
ing MPT message passing protocol. A number of 2-D calculations are presented
for both scalar advection-diffusion equations as well as the Euler equations gov-
erning compressible fluid flow to demonstrate performance of the preconditioning
algorithm.

The efficient numerical simulation of compressible fluid flow about complex
geometries continues to be a challenging problem in large scale computing. Many
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(a) s + uy = 0, Entrance/exit flow. (b) yus — zuy = eAu, Recirculation flow
in advection limit.

FIGURE 1. Two model advection flows.

computational problems of interest in combustion, turbulence, aerodynamic perfor-
mance analysis and optimization will require orders of magnitude increases in mesh
resolution and solution unknowns to adequately resolve relevant fluid flow features.
In solving these large problems, algorithmic scalability ! becomes fundamentally
important. To understand algorithmic scalability, we think of the partial differ-
ential equation discretization process as producing linear or linearized systems of
equations of the form

(1.1) Az —b=0

where A is some large (usually sparse) matrix, b is a given right-hand-side vector,
and z is the desired solution. For many practical problems, the amount of arithmetic
computation required to solve (1.1) by iterative methods can be estimated in terms
of the condition number of the system x(A). If A is symmetric positive definite
(SPD) the well-known conjugate gradient method converges at a constant rate
which depends on k. After n iterations of the conjugate gradient method, the error
€ satisfies

n
ll€°]]2 r(A) + 1
The situation changes considerably for advection dominated problems. The matrix
A ceases to be SPD so that the performance of iterative methods is not always linked
to the condition number behavior of A. Moreover, the convergence properties asso-
ciated with A can depend on nonlocal properties of the PDE. To see this, consider
the advection and advection-diffusion problems shown in Fig. 1. The entrance/exit
flow shown in Fig. 1(a) transports the solution and any error components along 45°
characteristics which eventually exit the domain. This is contrasted with the recir-
culation flow shown in Fig. 1(b) which has circular characteristics in the advection
dominated limit. In this (singular) limit, any radially symmetric error components
persist for all time. The behavior of iterative methods for these two problems is

Lthe arithmetic complexity of algorithms with increasing number of solution unknowns
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F1GUure 2. Convergence behavior of ILU preconditioned GMRES
for entrance/exit and recirculation flow problems using GLS dis-
cretization in a triangulated square (1600 dofs).

notably different. Figure 2 graphs the convergence history of ILU-preconditioned
GMRES in solving Cuthill-McKee ordered matrix problems for entrance/exit flow
and recirculation flow discretized using the Galerkin least-squares (GLS) procedure
described in Sec. 2. The entrance/exit flow matrix problem is solved to a 1078
accuracy tolerance in approximately 20 ILU-GMRES iterations. The recirculation
flow problem with € = 1073 requires 45 ILU-GMRES iterations to reach the 10~2
tolerance and approximately 100 ILU-GMRES iterations with ¢ = 0. This differ-
ence in the number of iterations required for each problem increases dramatically
as the mesh is refined. Any theory which addresses scalability and performance of
iterative methods for hyperbolic-elliptic problems must address these effects.

2. Stabilized Numerical Discretization of Hyperbolic Systems

Non-overlapping domain-decomposition procedures such as those developed in
Sec. 5 strongly motivate the use of compact-stencil spatial discretizations since
larger discretization stencils produce larger interface sizes. For this reason, the
Petrov-Galerkin approximation due to Hughes, Franca and Mallet [13] has been
used in the present study. Consider the prototype conservation law system in m
coupled independent variables in the spatial domain @ ¢ R? with boundary surface
I and exterior normal n(x)

(2.1) uy+ £y, =0, (z,t) € 2x[0,R"]

(2.2) (n; ffu)_ (u—g)=0, (z,t)eTl x[0,RT]

with implied summation over repeated indices. In this equation, u € R™ denotes
the vector of conserved variables and f! € R™ the inviscid flux vectors. The vector
g can be suitably chosen to impose characteristic data or surface flow tangency
using reflection principles. The conservation law system (2.1) is assumed to pos-
sess a generalized entropy pair so that the change of variables u(v) : R™ — R™
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symmetrizes the system in quasi-linear form

(2.3) uyv+fiv,, =0

VLT

with u,v symmetric positive definite and f! i symmetric. The computational domain
1 is composed of non-overlapping simplicial elements T3, } = UL}, T; N T} =
0, ¢ # j. For purposes of the present study, our attention is restricted to steady-
state calculations. Time derivatives are retained in the Galerkin integral so that
a pseudo-time marching strategy can be used for obtaining steady-state solutions.
The Galerkin least-squares method due to Hughes, Franca and Mallet [13] can be
defined via the following variational problem with time derivatives omitted from
the least-squares bilinear form: Let V" denote the finite element space

(2.4) Vi = {whw" € (°(@))",whr e (Pum)" }.
Find v* € V" such that for all w* e V"
(2.5) B(vh,wh)gal + B(vh,wh)ls + B(vh,wh)bc =0
with
B(V,W)ga = /(wTu(v),t - W?;ifi(v)) dQ
Q
B(v,w)s = (ffvw,zi)T‘r (ffvv,z,.) dQ
TeQ VT
B(vaw)bc = / WT h(v,g;n) ar
r
where
(2.6)

h(v_,vi,m) = ¢ (f(u(v_);m) +£(u(vy)im) = 2 AE)ml(a(v;) = u(v-))

Inserting standard C° polynomial spatial approximations and mass-lumping of the
remaining time derivative terms, yields coupled ordinary differential equations of
the form:

(2.7 Du;=R(u), R(u):R"—=>R"
or in symmetric variables
(2.8) Duyve =R(u(v)),

where D represents the (diagonal) lumped mass matrix. In the present study,
backward Euler time integration with local time linearization is applied to Eqn.
(2.7) yielding:

1 n
(2.9) {A—tD - (86_71?) ] (u"t! —u") = R(u").
The above equation can also be viewed as a modified Newton method for solving the
steady state equation R(u) = 0. For each modified Newton step, a large Jacobian
matrix must be solved. In practice At is varied as an exponential function ||R(u)]|
so that Newton’s method is approached as ||R(u)|| — 0. Since each Newton iterate
in (2.9) produces a linear system of the form (1.1), our attention focuses on this
prototype linear form.
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(a) Mesh triangulation (80,000 ele- (b)Mach number solution contours (bro-
ments). ken lines) and mesh partition boundaries
(bold lines).

FIGURE 3. Multiple component airfoil geometry with 16 subdo-
main partitioning and sample solution contours (My, = .20,a =
10°).

3. Domain Partitioning

In the present study, meshes are partitioned using the multilevel k-way parti-
tioning algorithm METIS developed by Karypis and Kumar [14]. Figure 3(a) shows
a typical airfoil geometry and triangulated domain. To construct a non-overlapping
partitioning, a dual triangulation graph has been provided to the METIS partition-
ing software. Figure 3(b) shows partition boundaries and sample solution contours
using the spatial discretization technique described in the previous section. By
partitioning the dual graph of the triangulation, the number of elements in each
subdomain is automatically balanced by the METIS software. Unfortunately, a
large percentage of computation in our domain-decomposition algorithm is propor-
tional to the interface size associated with each subdomain. On general meshes
containing non-uniform element densities, balancing subdomain sizes does not im-
ply a balance of interface sizes. In fact, results shown in Sec. 6 show increased
imbalance of interface sizes as meshes are partitioned into larger numbers of sub-
domains. This ultimately leads to poor load balancing of the parallel computation.
This topic will be revisited in Sec. 6.

4. Matrix Preconditioning

Since the matrix A originating from (2.9) is assumed to be ill-conditioned, a
first step is to consider the prototype linear system in right (or left) preconditioned
form

(4.1) (AP~YYPz —b=0.

The solution is unchanged but the convergence rate of iterative methods now de-
pends on properties of AP~1. Ideally, one seeks preconditioning matrices P which
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F1GURE 4. Convergence dependence of ILU on the number of mesh
points for diffusion and advection dominated problems using SUPG
discretization and Cuthill-McKee ordering.

are easily solved and in some sense nearby A, e.g. K(AP~1) = O(1) when A is SPD.
Several candidate preconditioning matrices have been considered in this study:

4.1. ILU Factorization. A common preconditioning choice is incomplete
lower-upper factorization with arbitrary fill level k, ILU[k]. Early application and
analysis of ILU preconditioning is given in Evans [11], Stone [22], and Meijerink
and van der Vorst [16]. Although the technique is algebraic and well-suited to
sparse matrices, ILU-preconditioned systems are not generally scalable. For exam-
ple, Dupont et al. [10] have shown that ILU[0] preconditioning does not asymptot-
ically change the O(h~2) condition number of the 5-point difference approximation
to Laplace’s equation. Figure 4 shows the convergence of ILU-preconditioned GM-
RES for Cuthill-McKee ordered matrix problems obtained from diffusion and ad-
vection dominated problems discretized using Galerkin and Galerkin least-squares
techniques respectively with linear elements. Both problems show pronounced con-
vergence deterioration as the number of solution unknowns (degrees of freedom)
increases. Note that matrix orderings exist for discretized scalar advection equa-
tions that are vastly superior to Cuthill-McKee ordering. Unfortunately, these
orderings do not generalize naturally to coupled systems of equations which do not
have a single characteristic direction. Some ILU matrix ordering experiments are
given in [6]. Keep in mind that ILU does recluster eigenvalues of the preconditioned
matrix so that for small enough problems a noticeable improvement can often be
observed when ILU preconditioning is combined with a Krylov projection sequence.

4.2. Multi-level Methods. In the past decade, multi-level approaches such
as multigrid has proven to be one of the most effective techniques for solving dis-
cretizations of elliptic PDEs [23]. For certain classes of elliptic problems, multigrid
attains optimal scalability. For hyperbolic-elliptic problems such as the steady-state
Navier-Stokes equations, the success of multigrid is less convincing. For example,
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FIGURE 5. Performance of GMRES with additive Schwarz precon-
ditioning.

Ref. [15] presents numerical results using multigrid to solve compressible Navier-
Stokes flow about a multiple-component wing geometry with asymptotic conver-
gence rates approaching .98 (Fig. 12 in Ref. [15]). This is quite far from the usual
convergence rates quoted for multigrid on elliptic model problems. This is not too
surprising since multigrid for hyperbolic-elliptic problems is not well-understood.
In addition, some multigrid algorithms require operations such as mesh coarsening
which are poorly defined for general meshes (especially in 3-D) or place unattainable
shape-regularity demands on mesh generation. Other techniques add new meshing
constraints to existing software packages which limit the overall applicability of the
software.

4.3. Additive Schwarz Methods. The additive Schwarz algorithm [19] is
appealing since each subdomain solve can be performed in parallel. Unfortunately
the performance of the algorithm deteriorates as the number of subdomains in-
creases. Let H denote the characteristic size of each subdomain, § the overlap
distance, and h the mesh spacing. Dryja and Widlund [8, 9] give the following
condition number bound for the method when used as a preconditioner for elliptic
discretizations

(4.2) K(AP~Y) < CH™? (1 + (H/6)2)

where C is a constant independent of H and h. This result describes the dete-
rioration as the number of subdomains increases (and H decreases). With some
additional work this deterioration can be removed by the introduction of a global
coarse subspace. Under the assumption of “generous overlap” the condition number
bound [8, 9, 4] can be improved to

(4.3) K(AP™Y) < C (1 + (H/9)).

The addition of a coarse space approximation introduces implementation problems
similar to those found in multigrid methods described above. Once again, the
theory associated with additive Schwarz methods for hyperbolic PDE systems is
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FIGURE 6. Domain decomposition and the corresponding block
matrix.

not well-developed. Practical applications of the additive Schwarz method for the
steady state calculation of hyperbolic PDE systems show similar deterioration of the
method when the coarse space is omitted. Figure 5 shows the performance of the
additive Schwarz algorithm used as a preconditioner for GMRES. The test matrix
was taken from one step of Newton’s method applied to an upwind finite volume
discretization of the Euler equations at low Mach number (M, = .2), see Barth
[1] for further details. These calculations were performed without coarse mesh
correction. As expected, the graphs show a degradation in quality with decreasing
overlap and increasing number of mesh partitions.

4.4. Schur complement Algorithms. Schur complement preconditioning
algorithms are a general family of algebraic techniques in non-overlapping domain-
decomposition. These techniques can be interpreted as variants of the well-known
substructuring method introduced by Przemieniecki [17] in structural analysis.
When recursively applied, the method is related to the nested dissection algorithm.
In the present development, we consider an arbitrary domain as illustrated in Fig. 6
that has been further decomposed into subdomains labeled 1 — 4, interfaces labeled
5 — 9, and cross points . A natural 2 x 2 partitioning of the system is induced
by permuting rows and columns of the discretization matrix so that subdomain
unknowns are ordered first, interface unknowns second, and cross points ordered
last

App Apz| (zp I
44 Az = =
(44 e= [ e ()= (0
where zp, z7 denote the subdomain and interface variables respectively. The block
LU factorization of A is then given by

App 0:| [I A'D%)A’DI]

(4.5) A:LU:[AID o 2
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where
(4.6) S = Azz — AzpAppAps

is the Schur complement for the system. Note that App is block diagonal with
each block associated with a subdomain matrix. Subdomains are decoupled from
each other and only coupled to the interface. The subdomain decoupling property
is exploited heavily in parallel implementations.

In the next section, we outline a naive parallel implementation of the “exact”
factorization. This will serve as the basis for a number of simplifying approxima-
tions that will be discussed in later sections.

4.5. “Exact” Factorization. Given the domain partitioning illustrated in
Fig. 6, a straightforward (but naive) parallel implementation would assign a pro-
cessor to each subdomain and a single processor to the Schur complement. Let Z;
denote the union of interfaces surrounding D;. The entire solution process would
then consist of the following steps:

Parallel Preprocessing:

1. Parallel computation of subdomain Ap,p, matrix LU factors.
2. Parallel computation of Schur complement block entries associated with each
subdomain D;

3. Accumulation of the global Schur complement S matrix

#subdomains
(4.8) S=Az—- ), ASz.
i=1

Solution:

Step (1) up, = Ap'p, bo, (parallel)

Step (2) vz, = Az,p, up; (parallel)

Step (3) wyg = by — Y Foubdomains vz, (communication)

Step (4) z7z =S"lwz (sequential, communication)

Step (5) yo, = Ap 7, 77, (parallel)

) (

Tp; = Up; — A,}}Di YD; parallel)

This algorithm has several deficiencies. Steps 3 and 4 of the solution process are
sequential and require communication between the Schur complement and subdo-
mains. More generally, the algorithm is not scalable since the growth in size of the
Schur complement with increasing number of subdomains eventually overwhelms
the calculation in terms of memory, computation, and communication.

5. Iterative Schur complement Algorithms

A number of approximations have been investigated which simplify the exact
factorization algorithm and address the growth in size of the Schur complement.
During this investigation, our goal has been to develop algebraic techniques which
can be applied to both elliptic and hyperbolic partial differential equations. These
approximations include iterative (Krylov projection) subdomain and Schur com-
plement solves, element dropping and other sparsity control strategies, localized
subdomain solves in the formation of the Schur complement, and partitioning of
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the interface and parallel distribution of the Schur complement matrix. Before
describing each approximation and technique, we can make several observations:

Observation 1. (Ill-conditioning of Subproblems) For model elliptic problem
discretizations, it is known in the two subdomain case that k(Ap,p,) = O((L/h)?)
and x(S) = O(L/h) where L denotes the domain size. From this perspective,
both subproblems are ill-conditioned since the condition number depends on the
mesh spacing parameter h. If one considers the scalability experiment, the situa-
tion changes in a subtle way. In the scalability experiment, the number of mesh
points and the number of subdomains is increased such that the ratio of subdo-
main size to mesh spacing size H/h is held constant. The subdomain matrices for
elliptic problem discretizations now exhibit a O((H/h)?) condition number so the
cost associated with iteratively solving them (with or without preconditioning) is
approximately constant as the problem size is increased. Therefore, this portion of
the algorithm is scalable. Even so, it may be desirable to precondition the subdo-
main problems to reduce the overall cost. The Schur complement matrix retains (at
best) the O(L/h) condition number and becomes increasingly ill-conditioned as the
mesh size is increased. Thus in the scalability experiment, it is ill-conditioning of
the Schur complement matrix that must be controlled by adequate preconditioning,
see for example Dryja, Smith and Widlund [7].

Observation 2. (Non-stationary Preconditioning) The use of Krylov pro-
jection methods to solve the local subdomain and Schur complement subproblems
renders the global preconditioner non-stationary. Consequently, Krylov projection
methods designed for non-stationary preconditioners should be used for the global
problem. For this reason, FGMRES [18], a variant of GMRES designed for non-
stationary preconditioning, has been used in the present work.

Observation 3. (Algebraic Coarse Space) The Schur complement serves as
an algebraic coarse space operator since the system

(5.1) Sxr = by — AI’DA'B%)b’D

globally couples solution unknowns on the entire interface. The rapid propagation
of information to large distances is a crucial component of optimal algorithms.

5.1. ILU-GMRES Subdomain and Schur complement Solves. The first
natural approximation is to replace exact inverses of the subdomain and Schur com-
plement subproblems with an iterative Krylov projection method such as GMRES
(or stabilized biconjugate gradient).

5.1.1. Iterative Subdomain Solves. Recall from the exact factorization algo-
rithm that a subdomain solve is required once in the preprocessing step and twice
in the solution step. This suggests replacing these three inverses with my, mo, and
mg steps of GMRES respectively. As mentioned in Observation 1, although the
condition number of subdomain problems remains roughly constant in the scalabil-
ity experiment, it still is beneficial to precondition subdomain problems to improve
the overall efficiency of the global preconditioner. By preconditioning subdomain
problems, the parameters mj,mo,m3 can be kept small. This will be exploited
in later approximations. Since the subdomain matrices are assumed given, it is
straightforward to precondition subdomains using ILU[k]. For the GLS spatial
discretization, satisfactory performance is achieved using ILU[2].
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5.1.2. Iterative Schur complement Solves. It is possible to avoid explicitly com-
puting the Schur complement matrix for use in Krylov projection methods by al-
ternatively computing the action of S on a given vector p, i.e.

(5.2) Sp=Azrp— ArpApnApz .

Unfortunately S is ill-conditioned, thus some form of interface preconditioning is
needed. For elliptic problems, the rapid decay of elements away from the diagonal
in the Schur complement matrix [12] permits simple preconditioning techniques.
Bramble, Pasciak, and Schatz [3] have shown that even the simple block Jacobi
preconditioner yields a substantial improvement in condition number

(5.3) K(SPg') < CH™2 (1 +log?(H/h))

for C independent of A and H. For a small number of subdomains, this technique
is very effective. To avoid the explicit formation of the diagonal blocks, a number
of simplified approximations have been introduced over the last several years, see
for examples Bjorstad [2] or Smith [21]. By introducing a further coarse space
coupling of cross points to the interface, the condition number is further improved

(5.4) K(SPg') < C (1 +log®(H/h)) .

Unfortunately, the Schur complement associated with advection dominated dis-
cretizations may not exhibit the rapid element decay found in the elliptic case.
This can occur when characteristic trajectories of the advection equation traverse
a subdomain from one interface edge to another. Consequently, the Schur comple-
ment is not well-preconditioned by elliptic-like preconditioners that use the action
of local problems. A more basic strategy has been developed in the present work
whereby elements of the Schur complement are explicitly computed. Once the el-
ements have been computed, ILU factorization is used to precondition the Schur
complement iterative solution. In principle, ILU factorization with a suitable re-
ordering of unknowns can compute the long distance interactions associated with
simple advection fields corresponding to entrance/exit-like flows. For general ad-
vection fields, it remains a topic of current research to find reordering algorithms
suitable for ILU factorization. The situation is further complicated for coupled
systems of hyperbolic equations (even in two independent variables) where multi-
ple characteristic directions and/or Cauchy-Riemann systems can be produced. At
the present time, Cuthill-McKee ordering has been used on all matrices although
improved reordering algorithms are currently under development.

In the present implementation, each subdomain processor computes (in paral-
lel) and stores portions of the Schur complement matrix

(5.5) AST,- = Af,-’Di Al_),-l’D,- ADZ-Z-‘

To gain improved parallel scalability, the interface edges and cross points are par-
titioned into a smaller number of generic “subinterfaces”. This subinterface parti-
tioning is accomplished by assigning a supernode to each interface edge separating
two subdomains, forming the graph of the Schur complement matrix in terms of
these supernodes, and applying the METIS partitioning software to this graph. Let
Z; denote the j-th subinterface such that Z = U;I;. Computation of the action
of the Schur complement matrix on a vector p needed in Schur complement solves
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FIGURE 7. Interface (bold lines) decomposed into 4 subinterfaces
indicated by alternating shaded regions.

now takes the (highly parallel) form

#subinter faces _ #subdomains
(5:6) Sp= Y Azz p@)— > ASg p(T).
j=1 i=1

Using this formula it is straightforward to compute the action of S on a vector p
to any required accuracy by choosing the subdomain iteration parameter m; large
enough. Figure 7 shows an interface and the immediate neighboring mesh that
has been decomposed into 4 smaller subinterface partitions for a 32 subdomain
partitioning. By choosing the number of subinterface partitions proportional to
the square root of the number of 2-D subdomains and assigning a processor to
each, the number of solution unknowns associated with each subinterface is held
approximately constant in the scalability experiment. Note that the use of iterative
subdomain solves renders both Eqns. (5.2) and (5.6) approximate.

In our investigation, the Schur complement is preconditioned using ILU fac-
torization. This is not a straightforward task for two reasons: (1) portions of the
Schur complement are distributed among subdomain processors, (2) the interface
itself has been distributed among several subinterface processors. In the next sec-
tion, a block element dropping strategy is proposed for gathering portions of the
Schur complement together on subinterface processors for use in ILU precondition-
ing the Schur complement solve. Thus, a block Jacobi preconditioner is constructed
for the Schur complement which is more powerful than the Bramble, Pasciak, and
Schatz (BPS) form (without coarse space correction) since the blocks now corre-
spond to larger subinterfaces rather than the smaller interface edges. Formally,
BPS preconditioning without coarse space correction can be obtained for 2D ellip-
tic discretizations by dropping additional terms in our Schur complement matrix
approximation and ordering unknowns along interface edges so that the ILU fac-
torization of the tridiagonal-like system for each interface edge becomes exact.
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the global FGMRES convergence, m; = mg = mg for meshes
containing 2500, 10000, and 40000 solution unknowns.

5.1.3. Block Element Dropping. In our implementation, portions of the Schur
complement residing on subdomain processors are gathered together on subinter-
face processors for use in ILU preconditioning of the Schur complement solve. In
assembling a Schur complement matrix approximation on each subinterface proces-
sor, certain matrix elements are neglected:

1. All elements that couple subinterfaces are ignored. This yields a block Jacobi
approximation for subinterfaces.

2. All elements with matrix entry location that exceeds a user specified graph
distance from the diagonal as measured on the triangulation graph are ig-
nored. Recall that the Schur complement matrix can be very dense. The
graph distance criteria is motivated by the rapid decay of elements away
from the matrix diagonal for elliptic problems. In all subsequent calcula-
tions, a graph distance threshold of 2 has been chosen for block element
dropping.

Figures 8(a) and 8(b) show calculations performed with the present non-overlapping
domain-decomposition preconditioner for diffusion and advection problems. These
figures graph the number of global FGMRES iterations needed to solve the dis-
cretization matrix problem to 1078 accuracy tolerance as a function of the number
of subproblem iterations. In this example, all the subproblem iteration parameters
have been set equal to each other (m; = my = m3). The horizontal lines show
poor scalability of single domain ILU-FGMRES on meshes containing 2500, 10000,
and 40000 solution unknowns. The remaining curves show the behavior of the
Schur complement preconditioned FGMRES on 4, 16, and 64 subdomain meshes.
Satisfactory scalability for very small values (5 or 6) of the subproblem iteration
parameter m; is clearly observed.



16 TIMOTHY J. BARTH, TONY F. CHAN, AND WEI-PAI TANG

—» Diffusion Problem
- o Advection Problem

Global Iterations Required
[ee]

A ', -, / 41 SR SN S <

A 0 ame

o «@ _ 2 3 2 5

AN\ Wireframe Support Distance

(a) Wireframe region surrounding inter- (b) Effect of wireframe support on pre-

face. conditioner performance for diffusion
Uzz +Uyy = 0 and advection uz +uy =0
problems.

FIGURE 9. Wireframe region surrounding interface and precondi-
tioner performance results for a fixed mesh size (1600 vertices) and
16 subdomain partitioning.

5.1.4. Wireframe Approximation. A major cost in the explicit construction of
the Schur complement is the matrix-matrix product

(5.7) AB}Di Ap.z,-

Since the subdomain inverse is computed iteratively using ILU-GMRES iteration,
forming (5.7) is equivalent to solving a multiple right-hand sides system with each
right-hand side vector corresponding to a column of A, 7 . The number of columns
of Ap, 7, is precisely the number of solution unknowns located on the interface sur-
rounding a subdomain. This computational cost can be quite large. Numerical
experiments with Krylov projection methods designed for multiple right-hand side
systems [20] showed only marginal improvement owing to the fact that the columns
are essentially independent. In the following paragraphs, “wireframe” and “super-
sparse” approximations are introduced to reduce the cost in forming the Schur
complement matrix.

The wireframe approximation idea [5] is motivated from standard elliptic domain-
decomposition theory by the rapid decay of elements in S with graph distance from
the diagonal. Consider constructing a relatively thin wireframe region surrounding
the interface as shown in Fig. 9(a). In forming the Eqn. (5.7) expression, sub-
domain solves are performed using the much smaller wireframe subdomains. In
matrix terms, a principal submatrix of A, corresponding to the variables within the
wireframe, is used to compute the (approximate) Schur complement of the inter-
face variables. It is known from domain-decomposition theory that the exact Schur
complement of the wireframe region is spectrally equivalent to the Schur comple-
ment of the whole domain. This wireframe approximation leads to a substantial
savings in the computation of the Schur complement matrix. Note that the full
subdomain matrices are used everywhere else in the Schur complement algorithm.
The wireframe technique introduces a new adjustable parameter into the precon-
ditioner which represents the width of the wireframe. For simplicity, this width is
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specified in terms of graph distance on the mesh triangulation. Figure 9(b) demon-
strates the performance of this approximation by graphing the total number of
preconditioned FGMRES iterations required to solve the global matrix problem to
a 1079 accuracy tolerance while varying the width of the wireframe. As expected,
the quality of the preconditioner improves rapidly with increasing wireframe width
with full subdomain-like results obtained using modest wireframe widths. As a con-
sequence of the wireframe construction, the time taken form the Schur complement
has dropped by approximately 50%.

5.1.5. Supersparse Matrix-Vector Operations . It is possible to introduce fur-
ther approximations which improve upon the overall efficiency in forming the Schur
complement matrix. One simple idea is to exploit the extreme sparsity in columns of
Ap,7z, or equivalently the sparsity in the right-hand sides produced from A7—3,-1D1- Ap.7
needed in the formation of the Schur complement. Observe that m steps of GM-
RES generates a small sequence of Krylov subspace vectors [p, A p, A% p,..., A™ p]
where p is a right-hand side vector. Consequently for small m, if both A and p are
sparse then the sequence of matrix-vector products will be relatively sparse. Stan-
dard sparse matrix-vector product subroutines utilize the matrix in sparse storage
format and the vector in dense storage format. In the present application, the
vectors contain only a few non-zero entries so that standard sparse matrix-vector
products waste many arithmetic operations. For this reason, a “supersparse” soft-
ware library have been developed to take advantage of the sparsity in matrices
as well as in vectors by storing both in compressed form. Unfortunately, when
GMRES is preconditioned using ILU factorization, the Krylov sequence becomes
[p,AP™! p,(AP71)2 p,...,(AP~1)™ p]. Since the inverse of the ILU approxi-
mate factors L and U can be dense, the first application of ILU preconditioning
produces a dense Krylov vector result. All subsequent Krylov vectors can become
dense as well. To prevent this densification of vectors using ILU preconditioning, a
fill-level-like strategy has been incorporated into the ILU backsolve step. Consider
the ILU preconditioning problem, LUr =b. This system is conventionally solved
by a lower triangular backsolve, w = E‘lb, followed by a upper triangular back-
solve r = U~ w. In our supersparse strategy, sparsity is controlled by imposing
a non-zero fill pattern for the vectors w and r during lower and upper backsolves.
The backsolve fill patterns are most easily specified in terms fill-level distance, i.e.
graph distance from existing nonzeros of the right-hand side vector in which new
fill in the resultant vector is allowed to occur. This idea is motivated from the
element decay phenomena observed for elliptic problems. Table 1 shows the perfor-
mance benefits of using supersparse computations together with backsolve fill-level
specification for a 2-D test problem consisting of Euler flow past a multi-element
airfoil geometry partitioned into 4 subdomains with 1600 mesh vertices in each sub-
domain. Computations were performed on the IBM SP2 parallel computer using
MPT message passing protocol. Various values of backsolve fill-level distance were
chosen while monitoring the number of global GMRES iterations needed to solve
the matrix problem and the time taken to form the Schur complement precondi-
tioner. Results for this problem indicate preconditioning performance comparable
to exact ILU backsolves using backsolve fill-level distances of only 2 or 3 with a
60-70% reduction in cost.
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Backsolve Global
Fill-Level Distance k | GMRES Iterations | Time(k)/Time(co)
0 26 0.325
1 22 0.313
2 21 0.337
3 20 0.362
4 20 0.392
00 20 1.000

TABLE 1. Performance of the Schur complement preconditioner
with supersparse arithmetic for a 2-D test problem consisting of
Euler flow past a multi-element airfoil geometry partitioned into 4
subdomains with 1600 mesh vertices in each subdomain.

(a) Mach contours (4 subdomains, 20K (b) Mach contours (16 subdomains, 80K
elements). elements).

FIGURE 10. Mach number contours and mesh partition boundaries
for NACAO0012 airfoil geometry.

6. Numerical Results on the IBM SP2

In the remaining paragraphs, we assess the performance of the Schur com-
plement preconditioned FGMRES in solving linear matrix problems associated an
approximate Newton method for the nonlinear discretized compressible Euler equa-
tions. All calculations were performed on an IBM SP2 parallel computer using MPI
message passing protocol. A scalability experiment was performed on meshes con-
taining 4/1, 16/2, and 64/4 subdomains/subinterfaces with each subdomain con-
taining 5000 mesh elements. Figures 10(a) and 10(b) show mesh partitionings and
sample Mach number solution contours for subsonic (M, = .20,a = 2.0°) flow
over the airfoil geometry. The flow field was computed using the stabilized GLS
discretization and approximate Newton method described in Sec. 2. Figure 11
graphs the convergence of the approximate Newton method for the 16 subdomain
test problem. FEach approximate Newton iterate shown in Fig. 11 requires the



A PARALLEL NON-OVERLAPPING DOMAIN-DECOMPOSITION ALGORITHM ... 19

1:
10, .

101— \:\'\. '.."

10, "~ Y
103§ \'\“\\

Norm(Residual)
k)

—— L2 Norm Residual
2 -« Max Norm Update

0 5 10 15
Approximate Newton lteration

FIGURE 11. Nonlinear convergence behavior of the approximate
Newton method for subsonic airfoil flow.

Di >
10 1§ e It=1, CFL=500
] - It=2) CFL=500
] +. 1t=3, CFL=500
1 —« It=4, CFL=500 —»— It=1, CFL=500
] “u It=5, CFL=523 T+ 1t=2, CFL=500
104 i It=6, CFL=938 + 1t=3, CFL=500
E 2 1t=7, CFL=8759 Z4 It=4, CFL=500
= ] e - 1t=8, CFL=3533 — “u It=5, CFL=513
7 bt —o- It=9, CFL=4.E+6 2 \ — 1t=6, CFL=778
I AN -o- t=10, CFL=7.E+6 I -+ It=7, CFL=3036
Z o It=11, CFL=1E+7 z P . 1t=8, CFL=763
Z 101 b= R = e
E 107 £ SR O 7 111 CFL=9E+6
(=} 9 o) TN - - 1t=12, CFL=9.E+6
b4 1 b4 R + 1t=13, CFL=1.E+7
10'35 W, )
E D NGB
] Last Newton Step Last Newton Step
1 . First Newton Step
1 ~g————  First Newton Step
-4 -4
lO T T T T T 1 lO T T T T T 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Globa FGMRES Matrix-Vector Products Globa FGMRES Matrix-Vector Products
(a) 4 subdomains (20K elements). (b) 16 subdomains (80K elements).

Ficurte 12. FGMRES convergence history for each Newton step.

solution of a linear matrix system which has been solved using the Schur comple-
ment preconditioned FGMRES algorithm. Figure 12 graphs the convergence of the
FGMRES algorithm for each matrix from the 4 and 16 subdomain test problems.
These calculations were performed using ILU[2] and my = my = mg = 5 iterations
on subproblems with supersparse distance equal to 5. The 4 subdomain mesh with
20000 total elements produces matrices that are easily solved in 9-17 global FGM-
RES iterations. Calculations corresponding to the largest CFL numbers are close
approximations to exact Newton iterates. As is typically observed by these meth-
ods, the final few Newton iterates are solved more easily than matrices produced
during earlier iterates. The most difficult matrix problem required 17 FGMRES it-
erations and the final Newton iterate required only 12 FGMRES iterations. The 16
subdomain mesh containing 80000 total elements produces matrices that are solved
in 12-32 global FGMRES. Due to the nonlinearity in the spatial discretization, sev-
eral approximate Newton iterates were relatively difficult to solve, requiring over
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FiGureE 13. Raw IBM SP2 timing breakdown and the effect of
increased number of subdomains on smallest and largest interface
sizes.

30 FGMRES iterations. As nonlinear convergence is obtained the matrix problems
become less demanding. In this case, the final Newton iterate matrix required 22
FGMRES iterations. This iteration degradation from the 4 subdomain case can
be reduced by increasing the subproblem iteration parameters m;y, ma, mg but the
overall computation time is increased. In the remaining timing graphs, we have
sampled timings from 15 FGMRES iterations taken from the final Newton iterate
on each mesh. For example, Fig. 13(a) gives a raw timing breakdown for several of
the major calculations in the overall solver: calculation of the Schur complement
matrix, preconditioning FGMRES with the Schur complement algorithm, matrix
element computation and assembly, and FGMRES solve. Results are plotted on
each of the meshes containing 4, 16, and 64 subdomains with 5000 elements per
subdomain. Since the number of elements in each subdomain is held constant, the
time taken to assemble the matrix is also constant. Observe that in our implemen-
tation the time to form and apply the Schur complement preconditioner currently
dominates the calculation. Although the growth observed in these timings with
increasing numbers of subdomains comes from several sources, the dominate effect
comes from a very simple source: the mazimum interface size growth associated
with subdomains. This has a devastating impact on the parallel performance since
at the Schur complement synchronization point all processors must wait for subdo-
mains working on the largest interfaces to finish. Figure 13(b) plots this growth in
maximum interface size as a function of number of subdomains in our scalability
experiment. Although the number of elements in each subdomain has been held
constant in this experiment, the largest interface associated with any subdomain
has more than doubled. This essentially translates into a doubling in time to form
the Schur complement matrix. This doubling in time is clearly observed in the raw
timing breakdown in Fig. 13(a). At this point in time, we known of no partitioning
method that actively addresses controlling the maximum interface size associated
with subdomains. We suspect that other non-overlapping methods are sensitive to
this effect as well.
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7. Concluding Remarks

Experience with our non-overlapping domain-decomposition method with an al-

gebraically generated coarse problem shows that we can successfully trade off some
of the robustness of the exact Schur complement method for increased efficiency by
making appropriately designed approximations. In particular, the localized wire-
frame approximation and the supersparse matrix-vector operations together result
in reduced cost without significantly degrading the overall convergence rate.

It remains an outstanding problem to partition domains such that the maxi-

mum interface size does grow with increased number of subdomains and mesh size.
In addition, it may be cost effective to combine this technique with multigrid or
multiple-grid techniques to improve the robustness of Newton’s method.
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